细胞凋亡与癌症治疗
摘 要 目的:开发生产γ-亚麻酸(GLA)新的微生物资源。方法:研究温度、时间、碳源和氮源对雅致枝霉(Thamnidium elegans)诱变株TE7-15的菌体生长、油脂积累及GLA合成的影响。结果:确定了TE7-15菌株适宜的摇瓶发酵培养条件,其菌体生物量达到19.04 g/L,GLA产量达到1 079.95 mg/L。结论:该菌株可以满足工业化生产的要求。
中图分类号 Q93-33
Study on the Production of γ-Linolenic Acid by the Fermentation of Thamndium Elegans TE7-15
Zhang Ling Li Zhifeng Lai Bingsen Shen Xiaojing Tan Yafang Sun Shuqin
(Beijing Military Medical College (Beijing 100071)
Abstract Purpose:The aim is to exploit a new microoganism resource for γ-linolenic acid(GLA) production.Methods: The effects on fermentation conditions,such as temperature,fermentation time,carbon source and nitrogen source on cell growth and lipid formation of Thamnidium elegans TE7-15 strain were studied.Results:The optimum culture medium and culture conditions were established,and the dry cell weight and γ-linolenic acid yield were 19.04 g/L and 1 079.95 mg/L under the conditionrespectively.Conclusion:The strain may be used for the industrial production of GLA.
Key words Thamnidium elegans, Fermentation, γ-linolenic acid
γ-亚麻酸(γ-Linolenic acid,GLA)属于多不饱和脂肪酸,对治疗糖尿病、皮肤老化症、心血管疾病等均有一定疗效,故常作保健食品的功能因子或药品。
GLA过去多从月见草籽中提取,这易受种植等因素的限制。微生物发酵生产GLA具有生长速度快、培养简单且原料不受限制等特点,所以越来越受到人们的重视[1]。目前国内多采用被孢霉(Mortierella)发酵生产GLA[2,3],我们以雅致枝霉为出发菌株,对其进行了诱变育种,获得高产GLA的诱变株TE7-15。本文对其发酵条件进行了研究,旨在开发生产GLA的新的微生物资源。
1 材料和方法
1.1 菌株和培养基
雅致枝霉(Thamnidium elegans)AS 3.345 6,中国科学院微生物研究所国家菌种保藏中心;雅致枝霉TE7-15突变株是AS 3.3456菌株经5-氟尿嘧啶、紫外线和氯化锂复合诱变选育而得。
斜面培养基:霉菌培养基,北京市海淀区微生物培养基制品厂;种子培养基(g/L):葡萄糖30,酵母粉1.0,蛋白胨1.0,麦芽汁1.0,KH2PO4 2.0,柠檬酸钠0.5,CuSO4 0.5×10-3,ZnSO4 7.5×10-3,MnSO4 2.0×10-3, pH 6.0;基础发酵培养基(g/L):葡萄糖50,酵母粉1.0,蛋白胨5.0,KH2PO4 2.0,CaCO3 0.3,MgSO4 0.3,CuSO4 0.5×10-3,ZnSO4 7.5×10-3,MnSO4 2.0×10-3,柠檬酸钠2.0,pH 6.0。
1.2 菌株的培养与处理
菌种在斜面培养基上于15℃培养5 d,活化。将活化后的菌种接种于种子培养基,以100 ml的三角瓶装液10 ml,在15℃下,120 r/min培养24 h。
在装有培养基100 ml的500 ml三角瓶接入种子液,接种量10%,15℃,140 r/min培养5 d。发酵液经的确良布过滤,蒸馏水洗涤后,称湿重,取部分湿菌体,100℃烘干至恒重,冷却后称干重,以确定菌体得率[4]。
1.3 分析方法
1.3.1 菌体油脂的提取 湿菌体按每克菌加4 mol/L HCl 6 ml混匀,室温放置1 h,于沸水浴煮沸3 min,置于冰室速冷,然后加入氯仿及甲醇(1∶1),混匀后离心,挥发除去氯仿即得油脂[5]。
1.3.2 油脂中脂肪酸的气相色谱分析
1.3.2.1 油脂的甲酯化处理 油脂加入皂化液(0.5 mol/L KOH-甲醇)2 ml,混匀,于60℃水浴皂化至油珠消失,冷却后加入甲酯化液(14%三氟化硼-甲醇)2 ml,于60℃水浴甲酯化30 min,冷却后加入正己烷1 ml,饱和氯化钠1 ml,离心后取上清液,即可用于气相色谱分析。
1.3.2.2 标准品 以高纯度的GLA甲酯(Sigma产品,纯度99%)作为标准品。
1.3.2.3 仪器和工作条件 用PE-XL气相色谱仪分析油脂组成;FAMEWAX石英毛细管色谱柱,柱长30 m,内径0.32 mm,液膜厚0.35 μm。检测器为氢火焰离子化检测器(FID)。程序升温条件为:柱温190℃时,以0.3℃/min升至191℃,再以4℃/min升至225℃,维持15 min。
2 结 果
2.1 不同碳源对菌体生长及GLA产量的影响
在培养基中加入不同碳源进行对比实验(表1),结果表明,可溶性淀粉和蔗糖均不利于菌体生长及油脂积累;蔗糖有利于GLA的合成,但GLA是胞内脂肪酸,我们不能以GLA含量作为唯一指标,必须同时考察菌体干重及油脂产率,因此只有葡萄糖对各项指标可以兼顾。
表1 两种碳源浓度对菌体生长及GLA产量的影响
碳源 DC
(g/L)
TL
(g/L)
TL/DC
(%)
GLA
[mg/L(%)]
葡萄糖 19.52 3.01 15.43 817.52 (27.16)
可溶性淀粉 5.86 0.47 8.02 25.10 ( 5.34)
蔗 糖 9.09 0.55 6.54 167.14 (30.39)
DC为菌体干重;TL为油脂含量;GLA(%)为油脂中GLA的百分率,即GLA/TL
2.2 不同氮源对菌体生长及GLA产量的影响
本实验以葡萄糖为碳源,采用不同氮源进行比较实验,结果(表2)表明,利用尿素作氮源虽然有利于菌体生长,但不利于油脂的积累;(NH4)2SO4有利于促进GLA的合成,但不利于菌体生长;而KNO3、蛋白胨对菌体生长及GLA产量的影响相近,对各项指标均可兼顾,但蛋白胨成本较高,所以我们选择KNO3作为氮源。
表2 不同氮源对菌体生长及GLA产量的影响
氮源 DC
(g/L)
TL
(g/L)
TL/DC
(%)
GLA
[mg/L(%)]
KNO3 17.94 3.06 17.03 858.51 (28.10)
尿素 19.47 1.07 5.51 282.69 (26.42)
(NH4)2SO4 9.39 1.54 16.36 468.31 (30.41)
蛋白胨 18.65 3.11 16.69 847.58 (27.23)
2.3 不同温度对菌体生长及GLA产量的影响
我们采用不同温度进行培养,结果(表3)表明,该菌株要求适当的低温环境,12℃既有利于菌体生长,也有利于积累油脂并合成GLA。
表3 不同温度对菌体生长及GLA产量的影响
温度
(℃)
DC
(g/L)
TL
(g/L)
TL/DC
(%)
GLA
[mg/L(%)]
8 12.34 1.16 9.43 213.18 (18.32)
12 17.81 3.09 17.36 856.12 (27.69)
15 18.91 2.71 14.35 818.68 (30.21)
25 10.42 0.61 5.89 156.11 (25.59)
2.4 不同培养时间对菌体生长及GLA产量的影响
由表4可以看出,随培养时间的延长,菌体生长、油脂积累都逐渐增多,超过184 h油脂积累虽然仍在增多,但菌体生长逐渐减慢,且GLA合成比例逐渐下降即GLA合成的增加量与培养时间不成正比,继续延长时间则油脂积累也减少,所以综合评价后,我们选择培养时间为10 d。
表4 不同培养时间对菌体生长及GLA产量的影响
培养时间
(h)
DC
(g/L)
TL
(g/L)
TL/DC
(%)
GLA
[mg/L(%)]
136 17.29 2.60 15.01 628.30 (24.21)
184 19.52 3.00 15.39 784.38 (26.11)
240 18.32 3.05 16.65 881.45 (28.90)
284 18.83 3.10 16.46 830.18 (26.78)
2.5 优化培养条件的确立
在上述实验基础上,我们又进行了葡萄糖浓度的选择、碳/氮比值的选择,最终确立的培养基组分为(g/L):葡萄糖100,酵母粉1.0,蛋白胨1.0,KNO3 5.0,KH2PO4 2.0,CaCO3 0.3,MgSO4 0.3,CuSO4 0.5×10-3,ZnSO4 7.5×10-3,MnSO4 2.0×10-3,柠檬酸钠2.0,pH 6.0。培养温度为12℃,培养时间为10 d。以此条件进行摇瓶发酵实验,结果见表5。
表5 发酵验证实验
培养基 DC
(g/L)
TL
(g/L)
TL/DC
(%)
GLA
[mg/L(%)]
基础配方 17.65 3.25 18.43 903.65(27.78)
优化配方 19.04 3.94 20.67 1 079.75(27.41)
3 讨 论
本研究对雅致枝霉诱变株TE7-15进行了优化培养,调整了碳源、氮源等指标,初步确立了发酵培养条件。发酵实验结果表明:每升培养物菌体干重为19.04 g,油脂含量为2.25 g,GLA含量占总脂的27.41%,即每升发酵液产GLA 1.08 g,已达到工业化生产的指标,为GLA的发酵生产提供了新的菌株。
目前国内利用微生物发酵生产GLA的研究多采用被孢霉,如深黄被孢霉[2]、高山被孢霉[6]等,其菌体生物量及产脂率均较高,但GLA在总脂中比例为8%~15%,而TE7-15诱变株产生的GLA在总脂中比例较高,经多次实验测定均在25%以上,这一特点为GLA的提取、纯化提供了便利条件。
参考文献
1,关洁雯,林炜铁,姚汝华.被孢霉产γ-亚麻酸的补料工艺研究.食品与发酵工业,1998,24(5)∶18~20
2,张峻,邢来君,王红梅.γ-亚麻酸高产菌株的选育及发酵产物的分离提取.微生物学通报,1993,20(3)∶140~143
3,赵人俊,严虹,郑幼霞.影响被孢霉产生含γ-亚麻酸的油脂的几种因素.生物工程学报,1995,11(4)∶361~365
4,吴水清,姚汝华.真菌产生多不饱和脂肪酸的研究.中国生化药物杂志,1997,18(3)∶127~129
5,张玲,李植峰,谭亚芳,等.一种简便、快速的真菌油脂提取方法.生物技术,1999,9(6)∶43~44
6,张道海,王未名,陆文华.被孢霉MA90发酵生产γ-亚麻酸的研究.生物技术,1995,5(1)∶27~29
摘 要 生物体内各种组织细胞通过增殖与凋亡来维持数量的平衡。一旦这种平衡被打破就会导致一些疾病的产生,如癌症。细胞凋亡与癌症之间的关系为癌症的治疗提供了新思路。
中图分类号 R73-36
Apoptosis and Cancer Therapy
Fang Cheng, Chen Junhui
(Biochemistry Department, Nanjing University,Nanjing 210093)
抗癌药物的研究经历了一个漫长的发展过程,尽管已对许多抗肿瘤药物的细胞目标有了一定了解,但对于药物与肿瘤作用后如何导致细胞死亡的确切机制尚不清楚。近年来的研究发现细胞凋亡是各种抗癌药物引发细胞死亡的主要方式,从而使得细胞凋亡与癌症之间的关系及细胞凋亡在癌症治疗中的作用成为抗肿瘤研究的新焦点。
1 细胞凋亡
细胞死亡一般有两种方式,即细胞坏死(necrosis)和细胞凋亡(apoptosis)。细胞坏死通常发生在一群接触的细胞中,是由各种非生理因素,如局部缺血等引起的难以控制的一种破坏现象。它通过干扰细胞能量代谢,引起细胞渗透压不平衡,细胞质肿胀,最终由溶酶体酶导致细胞结构的不可逆性破坏并诱发局部的炎症反应。细胞凋亡这一概念是1972年由Kerr和Wyllie等提出的。它是一种主动的、固有的程序化现象,故又称程序性细胞死亡(programmed cell death,PCD)。
许多生理性、非生理性的因素都可以引起细胞凋亡,如射线、高温、毒素及各种抗癌药物等。而坏死实质上是由于细胞周
围环境产生严重的损伤性变化所诱发的,所以这两种过程在发生机制、形态学和生物化学等诸方面都不相同。
凋亡的细胞由于失去细胞间相互联系而与邻近细胞分离,随后细胞表面释放出信号分子被吞噬细胞识别,因此凋亡不损伤周围的细胞。凋亡一般伴有明显的形态学特征,以细胞核的变化为主,表现为核浓缩、细胞浆中细胞器密集、胞膜突出、体积缩小、DNA断裂及形成凋亡小体。
在生物体的每种细胞中,细胞数量的控制都是通过增殖与死亡之间的平衡来完成的,细胞增殖是受到高度调控的。但是直至最近人们才认识到细胞死亡的调控与细胞增殖的调控一样复杂,而且多细胞组织中不同细胞似乎都是通过活化一种内部编程的自杀程序而导致凋亡的[1]。尽管不同的细胞之间有共同的死亡机制,但各种细胞发生凋亡的诱导信号各不相同。各种不同细胞甚至同一细胞不同阶段对凋亡诱导的难易程度、速度也各不相同,如静止期的T细胞在X光照射后迅速凋亡,而活化后的T细胞则不同,与胸腺中蛋白质紧密结合的未成熟T细胞株对凋亡更为敏感[2]。
是什么导致了这些不同?越来越多的工作表明对凋亡的敏感性主要由Bcl-2、p53两种基因调控。p53基因位于17号染色体短臂上,长14~24 kb,编码一个由393个氨基酸组成的53 kD的蛋白质。p 53蛋白是细胞周期的“分子警察”,也是在DNA损伤后诱导凋亡的因子。p 53蛋白通过上调p 21蛋白来介导细胞周期停滞,p 21蛋白是各种细胞周期蛋白、CDK5(细胞周期蛋白依赖性蛋白激酶)及细胞周期蛋白-CDK5复合物的抑制剂,细胞周期停滞可以为DNA修复赢得时间,另一方面,如果细胞内损伤已无法修复,则p 53蛋白促进细胞凋亡。Bcl-2基因发现于人类滤泡性淋巴瘤的14、18位染色体转换点,它可以阻断细胞的凋亡而不影响细胞增殖。它是Bcl-2家族中的一员,该家族中一些成员促进凋亡,如Bax基因;另一些则阻碍凋亡,如Bcl-2基因[3]。体内细胞凋亡与增殖的不平衡与许多疾病有关[4]。
2 肿瘤的产生
30万亿正常细胞是一个复杂和相互依赖的共同管理、相互调控对方的大环境。一个细胞只有当收到附近其它细胞的生长刺激信号时才会增殖,收到抑制信号时则停止生长。这种相互作用使每一种组织得以维持一定的大小和形状,以适应机体需要。
癌细胞则与之截然相反,它们对于正常控制增殖的信号不加理会,只遵循它们自己内在的增殖标准。它们甚至可以移动、入侵邻近组织。由于这种恶性肿瘤细胞组成的肿瘤会入侵越来越多的组织,所以当它们干扰了机体生存所需的器官和组织后就导致机体死亡。
癌细胞是如何产生的呢?许多原癌基因正常时的作用是把外界生长刺激信号传入细胞内。当一种原癌基因突变后影响一个重要的生长刺激信号时,就会使本该沉默的基因活化。有的原癌基因突变后会干扰细胞中的部分信号级联途径,如Ras蛋白,从而在没有受到外界生长刺激信号的情况下,体内基因也被激活。外界的抑制信号也由于信号级联途径受到干扰而无法传入胞内。此外,癌细胞的细胞周期也受到干扰。1/2肿瘤细胞中的p 53基因都缺失或丧失功能,使p 21蛋白失去了抑制细胞周期蛋白、CDK5以及两者复合物的能力,从而使细胞周期失去了限制。组织一般有两种控制增殖并避免癌症的方法:一个是当细胞内重要成分受损或控制系统失调时导致细胞凋亡;另一个系统是细胞增殖倍数的限制。
细胞是如何控制自身增殖倍数的呢?染色体末端的端粒充当了计数器,并在一定时期开始启动衰老和危机。当每次增殖后进入S期时端粒都会微微变短,当长度低于一定阈值它们就启动细胞进入衰老。若细胞仍未经历衰老,进一步的缩短将最终导致危机,即过分短的端粒会导致细胞中的染色体融合或断裂,给细胞造成致命性打击,从而限制细胞增殖能力。端粒酶在正常细胞中几乎不存在,而几乎所有的癌细胞都有该酶,该酶编码的端粒代替了每次细胞周期中被缩短的端粒片段,从而保持了端粒的长度以不受增殖限制。
癌细胞也有几种逃避凋亡的方式。大多数癌细胞p 53基因丢失或无功能,而有一些癌细胞中产生过多Bcl-2蛋白,这些都可以有效避免凋亡[5]。当癌细胞突破这最后两道防线时它们就获得了永生。这不仅使肿瘤可以无限制生长,而且给了原癌细胞或癌细胞以足够长的时间来进行突变以增加复制和扩散能力[2,6]。
3 细胞凋亡与癌症治疗
在最近的30~50年中,癌症治疗主要依赖于各种细胞毒放疗和化疗,这些措施对许多血液恶性肿瘤和一些实体瘤,特别是对生殖细胞和一些儿童的恶性肿瘤有一定的治疗作用。但恶性肿瘤对这些措施有一定抗性,使用大剂量化疗会使抗性反应有一定好转但不会有所突破,而且正常组织和细胞也受到这些细胞毒的杀伤。
长期以来,人们认为肿瘤治疗是选择性地以快速分裂的细胞为靶细胞,但在临床上这种解释并不令人满意。因为可治疗的癌症有时生长缓慢而有抗药性的癌症中也可能快速分裂。更多的事实表明,治疗可能是在肿瘤细胞中诱导凋亡,而各种细胞凋亡的阈值不同造成了对治疗的反应不同[7]。
放疗的基础理论是体外的剂量依赖性模型与临床反应相关,DNA修复在放疗敏感性中扮演重要角色。从而人们推论敏感细胞与抗性细胞相比可能是修复能力差些。但近来的发现与这个观点相矛盾,如p 53基因损伤的肿瘤细胞对放疗有抗性,但是DNA的修复能力却很差。这与预计的结果不符合,暗示放疗可能并不是通过破坏DNA而是直接杀死肿瘤细胞的。凋亡提供了一个令人信服的解释——肿瘤并非死于DNA损伤而是诱发了凋亡程序,DNA损伤在凋亡诱导中也许十分重要,但是不可能直接杀死细胞,因此凋亡可能是放疗诱导的肿瘤死亡的机制[4]。
在研究表臼亚乙苷(拓扑异构酶Ⅱ抑制剂)和其它化疗药物时发现表臼亚乙苷诱导核内DNA断裂,这意味着它可能是通过凋亡来导致细胞死亡。从那以后,诱导凋亡的化疗药物的范围不断扩大,支持凋亡在化疗活性中的作用的事实不断积累。现已知通过凋亡的化疗药物有表臼亚乙苷、5-氟尿嘧啶、顺铂、长春新碱等。
这些化疗药物在许多细胞株的组织培养物中都可诱发凋亡,包括正常的胸腺细胞、淋巴瘤细胞、卵巢癌上皮细胞、白血病细胞、腺瘤细胞等。凋亡的产生可以用形态学观察,琼脂糖凝胶电泳,流式细胞仪来检测DNA含量或用其它标准来判定。
已有研究表明化疗药物在体内同样诱导细胞凋亡。例如在体内用视黄酸处理后T淋巴细胞凋亡;体内对食道癌细胞放疗和化疗(5-氟尿嘧啶、顺铂,博来霉素)处理后诱导细胞凋亡。
化疗诱发细胞凋亡的机制与凋亡调节密切相关。例如,许多化疗药物(如表鬼臼毒素吡喃葡糖苷)都是通过活化ICE或相关蛋白酶而引发最终的凋亡执行阶段。Bcl-2基因的过度表达也可以对抗一些化疗药物(如表鬼臼毒素吡喃葡糖苷、地塞米松、喜树碱、放线菌素 D)引起的细胞凋亡。Bax基因的少量表达也与癌症对联合化疗不良的反应及癌扩散有关。其它的凋亡调节剂也显出与化疗诱导的细胞死亡相作用。如破坏p 53基因可以保护乳腺细胞免遭顺铂诱导的凋亡;Epstein-Barr病毒蛋白BHRF 1(与Bcl-2在结构和功能上都类似)可以使细胞不受表鬼臼毒素吡喃葡糖苷和顺铂诱导的凋亡;Safingol(一种蛋白激酶C抑制剂)可以增加丝裂霉素C杀伤肠癌细胞的能力。
由于凋亡的诱发及调节机制十分复杂,所以各种肿瘤药物诱发细胞凋亡的机制也不尽相同。博来霉素(BLD)引起细胞凋亡机制与进入胞浆中的BLD数目有关。当数千个BLD进入胞浆后,细胞周期停滞在G2/M期,同时伴有细胞肿胀,核多形性改变并逐渐死亡;而当数百万个BLD分子进入胞浆后,细胞很快凋亡并伴有特征性DNA降解[8]。紫杉醇对同步在G0/G1期和G1/G2期的细胞均可在20 h内诱发凋亡。它是通过使Bcl-2表达下降且磷酸化灭活并同时激活Bax基因而诱发凋亡的,p 53基因在其中并无影响。阿霉素是通过升高二脂酰甘油的水平导致PKC激活,PKC可通过拓扑异构酶Ⅱ的磷酸化而直接作用DNA,导致DNA损伤和细胞凋亡[9]。阿糖胞苷(Ara-c)通过下降c-myc,Bcl-2基因表达而导致细胞凋亡,小剂量的Arg-c是S期特异性药物,而中大剂量则不限于S期[10]。顺铂在低剂量时使细胞生长停滞于G2期而不凋亡,高剂理时则诱发凋亡[8]。VP-16主要是引起聚(ADP-核糖)多聚酶活性提高,而该酶可直接激活钙/镁性依赖核酸内切酶,并且不被蛋白合成抑制剂所抑制[11]。
4 细胞凋亡与抗药性
放疗与化疗对癌症都有显著疗效,主要的障碍是许多肿瘤细胞对各种治疗都有抗性,所以细胞的抗药性成为研究的焦点。对凋亡的抗性成是抗药性的主要机制之一,许多其它抗药性机制已在体外肿瘤细胞中得到证实,包括药物代谢水平升高、药物积累改变、药物靶目标扩增、修复受损目标、多药抗性与MDR编码的p-糖蛋白、多药抗性蛋白、p450活性增加、多种药物靶目标——拓扑异构酶Ⅱ突变等。对凋亡的抗性是抗药性中新发现的机制,可以解释相当一部分治疗失败的原因[12,13]。
实际上不存在绝对的对抗化疗和放疗诱发的凋亡,只是相对于正常组织细胞的难易程度而已。许多肿瘤细胞都比正常细胞的抗凋亡能力强,故几乎不存在可以选择性杀伤肿瘤细胞而不杀伤正常宿主细胞的治疗方法[14,15]。
尽管我们对凋亡的产生及调控已有了初步的认识,但如何把它们应用于临床实践仍是一个大问题。但我们相信,随着基础研究的进一步深入,将为肿瘤治疗的成功或失败提供科学依据,并可为发掘新的抗癌药物拓宽研究领域。
江苏省自然科学基金项目(项目号BK97036)
参考文献
1,Thompson CB.Apoptosis in the pathogenesis and treatment of diseases.Science,1997∶1456~1461
2,Duke RC, Ojcius DM, Young JD.Cell suicide in health and disease. Scientific American,1996∶48~55
3,Saini KS,Walker NI.Biochemical and molecular mechanisms regulating apoptosis.Molecular and Cellular Biochemistry,1998∶9~25
4,Fisher DE.Apoptosis in cancer therapy:crossing the threshold.Cell,1994∶529~542
5,Shigekazu DC,Nabata SE.Apoptosis by death factor.Cell,1997∶355~365
6,Weinberg RA.How cancer arises.Scienfic American,1996∶32~40
7,Hannun YA.Apoptosis and the dilemma of cancer chemotherapy.Blood,1997∶1845~1853
8,戴育成,毛亨贞,陈功星,等.细胞凋亡在肿瘤发生和治疗上的意义.肿瘤,1995∶279~282
9,李鹏飞.抗肿瘤新策略——程序性细胞死亡.中国药理学通报,1996,12(1)∶11~14
10,Chan WY,Cheung KK,Schorge JO,et al.Bcl-2 and p53 protein expression,apoptosis,and p53 mutation in human epithelial ovation cancers.Am J Pathol, 2000,156(2)∶409~417
11,郭善禹.自杀基因治疗肿瘤研究现状与展望.国外医学——肿瘤学分册,1998,25(4)∶193~195
12,Miller DK. Activation of apoptosis and in its inhibination.Ann Ny Acad Sci,1999,886∶132~157
13,Apotodd R,Wong DTW. Oncogenes.Anticancer Res, 1999,19(6A)∶4729~4746
14,Wang CY,Mayo MW,Baldwin AS,et al. TNF-and cancer therapy-induced apoptosis:potentiation by inhibition of NF-κB.Science,1996∶784~787
15,Koshiji M,Adachi Y,Taketani S, et al. Mechanisms underlying apoptosis induced by combination of 5-fluorouracil and interferon-γ.Biochemical and Biophysical Research Communications,1997∶376~381
- 两性
- 男人
- 女性
- 母婴
|
· 处女座的特点 · 处女座最佳配对星座 · 2010年处女座运势 · 处女座女人的爱情 · 如何追处女座女人 · 处女座女人的特点 · 处女座女人 · 处女座男人喜欢的女人 · 如何对付处女座男人 |
|
· 怎样看待遗精 · 什么是滑精 · 什么是梦遗 · 什么是干燥性闭塞性龟头炎? · 前列腺炎检查 · 包皮手术过后多久可以性生活 · 早泄是不是跟包皮过长有关? · 早泄等于射精过快吗? · 体外射精有什么害处 |
|
· 女性经期切记将绿茶挡在门外 · 生命中的一次婚外恋 · 一个流氓和妓女的故事 · 最唯美的10首中国情诗 · 娇妻玩合租 结果引火烧身 · 男人必须了解女人的一些事 · 当女朋友被领导叫去陪酒 · 易让男人退避三舍的10类女人 · 老男人为什么招小女人的喜欢? |
|
· 春季合理喂养婴儿健康指南 · 如何正确使用空调保证健康 · 让宝宝接受保姆的三大招 · 哪些产妇需做会阴侧切 · 导致分娩时难产4因素 · 看美国准妈人性化孕产经历 · 准妈妈如何预防春季感冒? · 胎盘和脐带的功能与重要性 · 烟、酒和咖啡对胎儿的影响 |